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Abstract

We present a search for the technicolor particles ρT and πT in the process pp̄ → ρT → WπT

at a center of mass energy of
√

s = 1.96TeV. The search uses a data sample corresponding

to approximately 1.9 fb−1 of integrated luminosity accumulated by the CDF II detector at the

Fermilab Tevatron. The event signature we consider is W → `ν and πT → bb̄, bc̄ or bū depending

on the πT charge. We select events with a single high-pT electron or muon, large missing transverse

energy, and two jets. Jets corresponding to bottom quarks are identified with multiple b-tagging

algorithms. The observed number of events and the invariant mass distributions are consistent

with the standard model background expectations, and we exclude a region at 95% confidence

level in the ρT -πT mass plane. As a result, a large fraction of the region m(ρT ) = 180 - 250GeV/c2

and m(πT ) = 95 - 145GeV/c2 is excluded.

PACS numbers: 13.85.Rm, 14.80.Bn
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The mechanism of electroweak symmetry breaking in nature is still unknown. The stan-

dard model (SM) assumes the Higgs mechanism [1] but provides no explanation as to why

there should be a fundamental scalar Higgs field with a non-zero vacuum expectation value.

An alternative approach is to seek a dynamical mechanism for the symmetry breaking. The

scenario known as technicolor [2–4] proposes a new strong interaction, modeled on QCD,

which spontaneously breaks electroweak symmetry in an analogous way to the breaking of

chiral symmetry in QCD. The strong technicolor interaction between the new technifermions

results in a vacuum technifermion condensate which can break electroweak symmetry and

hence give mass to the W± and Z gauge bosons. As in QCD, the technicolor interaction

should give rise to technipions (πT ) and other technimesons. In this Letter we report the

results of a search for technipions produced in association with a W boson from technirho

(ρT ) decay, ρT → WπT , in the context of the technicolor straw man (TCSM) model [5].

Technirhos can be produced from an off-shell W or Z. Like the SM Higgs, the technipion

coupling to fermions is proportional to mass, and hence the technipion predominantly decays

to bb̄, bc̄, or bū, depending on its charge. The resulting final state is identified by selecting

events with exactly one high-pT electron or muon candidate, large missing transverse energy,

and two jets, at least one of which is identified as containing a b-quark (b-tagged).

Previous searches by the CDF and D0 experiments [6, 7] were limited not only by smaller

data samples, but also by contamination from jets associated with charm or light-flavor

quarks which can be falsely tagged as b-jets. The data sample used here corresponds to

1.9 ± 0.1 fb−1 of integrated luminosity, nearly five times the sample used in the previous

Tevatron searches. To improve the purity of the selected event sample, the search described

in this Letter employs the same b-tagging strategies that are used in the SM Higgs search in

the W + 2 jets channel [8]. Previous searches for technicolor particles at LEP were able to

exclude ρT production at 95% confidence level for 90 < mρT
< 206.7 GeV/c2, independently

of the assumed πT mass and other model parameters [9].

The CDF II [10] is a general purpose detector to study pp̄ collisions at
√

s = 1.96 TeV

at the Fermilab Tevatron. It consists of a cylindrical magnetic spectrometer, surrounded by

electromagnetic and hadronic calorimeters. Charged particle tracking is performed with

microstrip silicon detectors surrounded by a large cylindrical multilayer drift chamber,

both immersed in a 1.4 T solenoidal magnetic field aligned coaxially with the incoming

beams. Jets are identified as collections of electromagnetic and hadronic energy deposits

8



in calorimeter towers, which are clustered using an iterative cone algorithm with a cone of

∆R =
√

(∆φ)2 + (∆η)2 = 0.4 [11]. Muons are identified by a system of drift chambers and

scintillators placed outside the calorimeter at a depth of at least five nuclear interaction

lengths from the interaction region.

Events are collected using high-pT electron or muon triggers with a three-level selection

filter. The first two levels identify purely electromagnetic calorimeter clusters, or require

that track segments in the muon chambers align with tracks in the drift chamber having

pT > 8 GeV/c. The third-level trigger requires an electron (muon) with ET > 18 GeV

(pT > 18 GeV/c).

Events are required to have exactly one electron or muon candidate, large missing trans-

verse energy (6ET > 20 GeV) [11], and two jets. The electron or muon must be within the

central part of the detector, in the pseudorapidity regions |η| < 1.1 or |η| < 1.0, respectively,

and must have ET > 20 GeV or pT > 20 GeV. Because the lepton from a leptonic W decay

is well isolated from the rest of the event, the cone of ∆R = 0.4 surrounding the lepton is

required to contain less than 10% of the lepton transverse energy. It must also be no more

than 5 cm in z away from the primary event vertex, which is defined by fitting a subset of

charged particle tracks in the event to a single vertex. To reduce the background from Z

boson decays, we reject not only events with multiple high-pT leptons, but also events in

which the lepton and another high-pT track of opposite sign form an invariant mass between

76 < Mll < 106 GeV/c2. Jets used in the analysis must fall within the acceptance of the sili-

con detector (|η| < 2.0) for reliable b-tagging, and they must have transverse energy greater

than 20 GeV.

The primary background to this technicolor search is SM W + 2 jets production. However

this process is dominated by light-flavor jets, while the technipion decay process should

contain at least one b quark. Identifying these b-quark jets therefore helps to significantly

suppress the background. We use two b-tagging algorithms: a secondary vertex finding

algorithm [12] (secvtx) and a jet probability tagging algorithm [13] (jetprob). To further

improve the purity of the secvtx sample, a neural network (NN) filter has been trained

to reject tagged jets originating from charm or light-quarks [12]. The selection cuts on the

NN output are chosen to give 90% efficiency for true b-jets identified with secvtx while

rejecting 65±5% for light-flavor jets and 50±5% for charm jets, as measured using simulated

events and verified with multijet data. The search sensitivity is maximized by using three
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exclusive b-tagged event categories. The first category (ST+ST) contains events with two

secvtx b-tagged jets. The second category (ST+JP) consists of events where only one

of the jets is b-tagged by secvtx and the second jet is only b-tagged by jetprob. The

third category (ST+NNtag) is for events which do not belong to the first two categories

but contain exactly one secvtx b-tagged jet that also passes the NN filter. Because events

with charm and light-flavor jets are unlikely to be double-tagged, the extra NN filter is not

applied to double-tagged events.

The selected event sample includes contributions from other standard model processes.

The largest backgrounds are due to W + jets production, tt̄ production, and non-W multijet

production, with small contributions from single top, diboson (WW , WZ, ZZ), and Z → ττ

production. These backgrounds are estimated using the same methods as the standard model

Higgs boson search analysis in the W + 2 jets channel [12]. A summary of the estimated

backgrounds to the W + 2 jets final state that are described below is shown in Table I,

along with the number of observed events in data and the expected technicolor signal events

with mρT
= 200 GeV/c2 and mπT

= 115 GeV/c2.

The W + jets contribution includes jets from b and c quarks, and light-flavor jets

mistagged by the b-tagging algorithm. The effect of true W + heavy-flavor production

is estimated from a combination of data and simulation. We use the alpgen Monte Carlo

program [14] to calculate the rate of Wbb̄, Wcc̄, and Wc production relative to inclusive W

+ jets production. This relative rate is then applied to the observed W + jets sample, after

non-W and tt̄ contributions have been subtracted. Finally, we apply b-tagging efficiencies

and the NN filter rate calculated using the alpgen event samples.

Contributions from events with falsely tagged light-flavor jets (mistags) are estimated by

measuring a mistag rate in inclusive jet data. The mistag rate is further modified by the

NN filter efficiency. The resulting overall mistag rate is applied to the observed W + jets

sample to yield the number of mistagged events expected in the sample.

Events from tt̄ production followed by leptonic W decay typically have two b jets from top

decay, significant missing transverse energy, and one high-pT lepton with additional jets if

one of the W bosons from the top quarks decay hadronically. The tt̄ contribution to the `νbb̄

final state is estimated using simulated pythia events [15]. It is normalized to the next-to-

leading-order (NLO) cross section σtt̄ = 6.7+0.7
−0.9 pb calculated for mt = 175 GeV/c2 [16]. The

small contribution from production of single top quarks is estimated using madevent [17]
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and pythia normalized to the NLO cross section [18].

The signature of W decay can also be mimicked by non-W multijet events which may

contain a high-pT reconstructed lepton and missing transverse energy. These can arise from

semileptonic heavy-flavor decay or from hadrons misidentified as leptons. The reconstructed

leptons from such events are rarely isolated from other energetic particles, as required by

our event selection, and seldom yield large missing transverse energy. We therefore calculate

the number of non-W events in our selected sample by extrapolating from sideband regions

(defined in the space of lepton energy isolation and missing transverse energy) into the signal

region [19].

Small contributions from diboson backgrounds (WW , WZ, and ZZ) are estimated using

the NLO theoretical cross section calculations [20] and Z → ττ backgrounds are estimated

using the CDF result [21], with acceptances calculated using fully simulated events from the

pythia Monte Carlo program.

The dominant systematic uncertainty in the W + heavy-flavor background is the correc-

tion factor for simulation derived from multijet data [19]. Different simulation inputs give

different factors, and we find a 30% relative uncertainty on the background from heavy-

flavor. The background from mistags has uncertainties on the rate correction due to particle

interactions in detector material and on the NN rejection factor. Both are estimated to be

15% relative errors. Cross-checks of sideband data yield a 17% relative uncertainty on the

non-W multijet estimate. The electroweak background estimates for diboson and single top

are subject to uncertainties in the b-tagging efficiency and the cross section predictions.

The signal process in ρT → WπT → lνj1j2 is expected to show resonant peaks in both the

dijet and W + 2 jets mass spectra. We reconstruct the pz of the neutrino by constraining

the invariant mass of the lepton-neutrino pair to the W boson mass, which gives a two-

fold ambiguity. We select the solution with the smaller |pz|, since that is more probable

given the production mechanism of this heavy state; if there is no real solution, we set

the imaginary part of solution to zero. Figure 1 shows the observed dijet mass spectra

in the double tagged (ST+ST and ST+JP) and one secvtx with NN filter tagged 2 jets

samples, along with the distributions expected from the background processes. Figure 2

shows the Q-value distribution in each b-tagging category, the mass difference defined as

Q = m(ρT ) − m(πT ) − m(W ), which exploits the fact that the Q-value for the ρT decay is

quite small and consequently the resolution of the mass difference is better than the mass

11



Selection ST+ST ST+JP ST+NNtag

Wbb̄ 37.9±16.9 31.2±14.0 215.6±92.3

Wcc̄ 2.9±1.2 7.9±3.4 167.0±62.1

Mistag 3.9±0.4 11.7±0.9 107.1±9.4

tt̄ 19.0±2.9 15.6±2.4 60.7±9.3

Single top 8.5±1.2 7.0±1.0 44.0±6.4

non-W 5.5±1.0 9.6±1.7 184.7±33.0

WW 0.17±0.02 0.9±0.1 15.4±1.9

WZ 2.41±0.26 1.8±0.2 7.6±0.8

ZZ 0.06±0.01 0.08±0.01 0.31±0.03

Z → ττ 0.25±0.04 1.3±0.2 7.3±1.1

Total Bkg. 80.6±18.8 87.0±18.0 809.6±159.4

m(ρ±T ,π0
T )=(200,115) GeV/c2 11.2±1.4 7.7±1.1 20.7 ± 1.7

m(ρ0
T ,π∓

T )=(200,115) GeV/c2 1.5±0.3 2.8±0.6 23.0±2.0

Observed Events 83 90 805

TABLE I: Predicted sample composition and observed number of W + 2 jets in each b-tagging

category, along with the expected signal events for a mass hypothesis of mρT
= 200GeV/c2 and

mπT
= 115GeV/c2.

of the ρT itself. The signal distributions from the charged and neutral technicolor particles

with mρT
= 200 GeV/c2 and mπT

= 115 GeV/c2 are also shown for comparison. There is no

significant excess observed in either the dijet mass or Q-value distributions.

The acceptance for ρT → WπT → `νbb̄, bc̄, bū, including leptonic τ decays, is calculated

from samples generated with the pythia Monte Carlo program using ρT mass values between

180 and 250 GeV/c2 with a step of 10 GeV/c2. We set the parameters in the TCSM as:

NTC = 4, MV = MA = 200 GeV/c2, QU = QD + 1 and sin χ = 1/3, where NTC is the

number of technicolors, MV is the vector technimeson decay parameter, MA is the axial

mass parameter for technivector decays to technipion, QU(QD) is the charge of the up-

type (down-type) technifermion, and sin χ is the mixing angle between isotriplet technipion

interaction and mass eigenstates. For this study, we consider the lightest technihadron

12
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FIG. 1: Reconstructed dijet mass distributions for W + 2 jets events. The left is for double tags

(ST+ST and ST+JP) and the right is for single tag (ST+NNtag) events.
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FIG. 2: Reconstructed Q-value distributions for W + 2 jets events, where Q = m(ρT ) − m(πT ) −

m(W ). The left is for double tags (ST+ST and ST+JP) and the right is for single tag (ST+NNtag)

events.

masses in the ρT − πT mass plane 180 < m(ρT ) < 250 GeV/c2 and max(m(ρT )/2, m(W )) <

m(πT ) < m(ρT ) − m(W ) where the decay ρT → WπT dominates. The cut-off m(ρT ) at

250 GeV/c2 is set by the search sensitivity.

The total acceptances for ST+ST, ST+JP and ST+NNtag events of π0
T → bb̄ (π±

T →
bc̄, bū) are 0.40±0.05% (0.05±0.01%), 0.27±0.04% (0.10±0.02%), and 0.73±0.06% (0.81±
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0.07%), respectively, for mρT
= 200 GeV/c2 and mπT

= 115 GeV/c2. The dominant system-

atic uncertainty on the acceptance for the π0
T → bb̄ (π±

T → bc̄, bū) process originates from the

uncertainty on the b-tagging efficiencies, which is a 8.4% (9.4%) relative error for ST+ST,

a 9.2% (17.0%) relative error for ST+JP, and a 4.3% (4.3%) relative error for ST+NNtag.

Additional sources of systematic error include the jet energy scale, the lepton identification

efficiency, parton distribution functions, and the initial and final state radiation models [22].

The systematic uncertainties associated with the shape of dijet invariant mass and Q-value

are also studied by varying the jet energy scale and the initial and final state radiation,

which are found to have a negligible impact on the final results.

Since there is no significant excess of events in the data compared to the predicted back-

ground, we set the 95% C.L. excluded region on technicolor production as a function of the

technicolor particle mass. A 2-dimensional binned maximum-likelihood technique which as-

sumes Poisson statistics is used on the 2-dimensional distribution of dijet invariant mass vs

Q-value by constraining the number of background events within the uncertainties. To cal-

culate the 95% C.L. excluded region, we use neutral and charged πT signals simultaneously.

A Bayesian interval is constructed from the cumulative likelihood distributions and a prior

probability density function uniform in the number of technicolor signal events. The 95%

confidence level upper limit is defined to be the value sup for which
∫ sup

0 L(s)ds/
∫ ∞
0 L(s)ds =

0.95. The number of signal events is then converted to a technicolor particle production cross

section times branching fraction σ(pp̄ → Wπ0
T (π±

T )) · BR(π0
T (π±

T ) → bb̄(bc̄, bū)).

The expected limits determined from pseudo experiments and the observed limits relative

to the theoretical production rate are listed in Table II. The expected and observed 95%

confidence level excluded region in the ρT -πT mass plane is shown in Fig. 3. Almost the entire

region we have looked at in this search is excluded at 95% confidence level, except the area

near the WπT production threshold with m(ρT ) ≥ 220 GeV/c2 and m(πT ) ≥ 125 GeV/c2.

In summary, we have performed a search for technicolor production pp̄ → ρ
±/0

T →
W±π

0/∓
T → `νbb̄, `νbc̄, or `νbū using 1.9 fb−1 of integrated luminosity accumulated by the

CDF II detector. A large fraction of the region of m(ρT ) = 180 - 250 GeV/c2 and m(πT ) = 95

- 145 GeV/c2 is excluded at 95% confidence level, based on the technicolor Straw Man model.

This measurement excludes a much larger region than the previous Tevatron searches [6, 7].

We thank Ken Lane for many fruitful discussions, the Fermilab staff and the technical

staffs of the participating institutions for their vital contributions. This work was supported
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m(ρT ,πT ) Normalized Upper Limit m(ρT ,πT ) Normalized Upper Limit

GeV/c2 Observed Limit Expected Limit GeV/c2 Observed Limit Expected Limit

(180,95) 0.30 0.22+0.09
−0.11 (230,125) 0.60 0.48+0.22

−0.18

(190,95) 0.27 0.27+0.11
−0.13 (230,135) 0.72 0.49+0.21

−0.19

(190,105) 0.44 0.28+0.13
−0.13 (230,145) 1.61 0.79+0.35

−0.29

(200,105) 0.37 0.30+0.13
−0.13 (240,125) 0.71 0.57+0.26

−0.20

(200,115) 0.59 0.37+0.18
−0.14 (240,135) 0.65 0.56+0.25

−0.21

(210,110) 0.36 0.33+0.15
−0.15 (240,145) 0.86 0.58+0.24

−0.24

(210,115) 0.42 0.33+0.15
−0.13 (240,155) 1.94 1.03+0.45

−0.37

(210,125) 0.88 0.47+0.21
−0.17 (250,130) 0.75 0.65+0.27

−0.25

(220,115) 0.59 0.42+0.19
−0.17 (250,135) 0.76 0.66+0.26

−0.26

(220,125) 0.52 0.39+0.17
−0.15 (250,145) 0.69 0.65+0.27

−0.25

(220,135) 1.22 0.59+0.27
−0.23 (250,155) 1.02 0.72+0.34

−0.26

(230,120) 0.67 0.48+0.24
−0.18 (250,165) 2.01 1.31+0.58

−0.44

TABLE II: Expected and observed upper limit on σ(ρT → πT W±) × BR(πT → bq̄)/(σtheory(ρT →

πT W±) × BRtheory(πT → bq̄)) as a function of the m(ρT ) and m(πT ) hypothesis.
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